
1907

Evaluating the Impact of AI-Generated Prompts on Programming

Proficiency in Physics Study Education Program: A Case Study on

Computational Physics Tasks

Muhammad Taufik1* & Syahrial, A1
1Physics Education, Mathematics and Science Education,FKIP Universitas Mataram, Indonesia

Corresponding Author: taufik@unram.ac.id

Article History

Received : March 06th, 2025

Revised : April 27th, 2025

Accepted : May 15th, 2025

Abstract: This study investigates the use of artificial intelligence (AI)-assisted

code generation in a computational physics course for physics education

students. The study examines students' ability to generate effective prompts for

Pascal code, the quality of the generated code, and the resulting computational

outputs. A cohort of 28 students was tasked with solving three critical tasks:

numerical differentiation, numerical integration, and root-finding. The students'

performance was assessed based on three criteria: prompt generation, Pascal

code quality, and output quality. Descriptive statistics show that the mean

prompt scores for all topics are close to 1.0, with Integration slightly

outperforming other topics. Program scores for Integration were higher (mean

= 1.25) compared to Differentiation and Root-Finding, suggesting students

performed relatively better in Integration tasks. Output scores were closely

aligned with program scores, indicating strong student learning transfer.

Correlation analysis revealed high relationships between program and output

scores, especially for Integration and Root-Finding, highlighting the students’

ability to translate learning into practical applications. Statistical analysis

indicates significant variation in student performance across the three tasks,

with notable differences in AI-assisted code generation quality. These findings

emphasize the varied impact of AI tools on student proficiency in

computational tasks.

Keywords: AI-assisted code generation, programming proficiency,

computational physics, numerical differentiation, Pascal programming,

educational technology

INTRODUCTION

In recent years, the integration of

Artificial Intelligence (AI) into educational

frameworks has emerged as a pivotal area of

academic inquiry, with far-reaching implications

for pedagogy, student engagement, and learning

outcomes. The advent of AI technologies

presents unprecedented opportunities to

fundamentally alter the way education is

delivered, facilitating the creation of highly

personalized learning environments. Such

environments are tailored to meet the individual

needs of students, thereby fostering deeper

engagement, enhancing conceptual mastery, and

promoting critical thinking. The ability of AI-

driven tools to adapt to the learning styles and

progress of individual students offers the

potential for truly customized educational

experiences, a prospect that is especially

transformative in the context of complex

subjects such as computer science and

engineering (Chen et al., 2020). In particular, AI

tools designed to assist with programming

education have gained substantial traction.

These tools are invaluable in helping students

navigate and resolve the increasingly complex

programming challenges that are central to

fields such as computer science and software

engineering. AI technologies provide not only

structured support but also real-time feedback,

guided suggestions, and intelligent prompts that

allow students to engage with the underlying

principles of coding while honing their problem-

solving capabilities. Through these capabilities,

AI serves as both a cognitive scaffold and a

dynamic mentor, enabling learners to better

grasp computational concepts, optimize their

approach to solving problems, and refine their

coding skills (Chen et al., 2020; Luckin et al.,

2016).

Despite these advancements, the role of

AI in programming education, particularly

within the domain of computational physics,

ISSN (Print): 2502-7069; ISSN (Online): 2620-8326

mailto:taufik@unram.ac.id

Taufik & Syahrial (2025). Jurnal Ilmiah Profesi Pendidikan, 10 (2): 1907 – 1913

DOI: https://doi.org/10.29303/jipp.v10i2.3633

1908

remains underexplored. While the theoretical

foundations of physics have long been

emphasized in educational curricula, the

application of these principles through

programming has become increasingly vital.

Tasks such as numerical differentiation,

integration, and root-finding are core

competencies for students in physics, as they are

essential for deriving quantitative solutions to

complex physical phenomena. Yet, these skills

are notoriously difficult for students to master. It

is in this context that AI-driven tools have the

potential to provide significant value by

enhancing both the efficiency and depth of

students' engagement with computational

physics (Popenici & Kerr, 2017).

AI tools can support students in executing

complex computational methods while also

facilitating a deeper understanding of the

underlying algorithms and mathematical models.

By leveraging AI to guide students through

dynamic, real-time coding prompts, these tools

provide immediate, context-aware assistance,

offering both instructional support and

opportunities for independent problem-solving.

Despite the clear potential, the empirical

investigation into how AI tools influence

programming proficiency in computational

physics is limited, warranting further

exploration in this domain.

This study seeks to address this gap by

investigating the impact of AI-generated

prompts on the programming proficiency of

physics education students. Specifically, it

examines the relationship between AI-assisted

learning, the quality of students' programming

efforts, and the resulting computational outputs

in the context of three core computational tasks:

numerical differentiation, integration, and root-

finding. Through this investigation, the study

aims to provide valuable insights into how AI

tools can be utilized to enhance the learning

experience and educational outcomes in

computational physics education.

METHODS

This study involved a cohort of 28

undergraduate students who were enrolled in a

computational physics course. The focus of the

course was on developing key skills in scientific

computing, specifically numerical

differentiation, numerical integration, and root-

finding. These three topics are central to many

computational problems in physics, as they

serve as foundational techniques for

approximating solutions to complex physical

systems. Students were instructed to utilize

artificial intelligence (AI) tools to generate

prompts, which would then be used to construct

Pascal programs capable of solving these

computational tasks. The use of AI in this

context aimed to enhance the learning

experience by automating parts of the coding

process, allowing students to focus on

understanding the underlying concepts while AI

assisted in generating syntactically correct code.

The evaluation of students' performance

was carried out through three primary

dimensions: prompt generation, Pascal code

quality, and output quality. The first dimension,

prompt generation, focused on the students'

ability to formulate clear, concise, and effective

instructions for the AI. These instructions served

as the foundation for generating the Pascal code

and had to be structured in a way that facilitated

the production of accurate and relevant code.

The quality of the prompts was crucial, as even

minor ambiguities or poorly worded instructions

could lead to errors in the generated code. This

dimension assessed not only the clarity of the

students' instructions but also their ability to

guide the AI in generating code that was aligned

with the computational objectives of the tasks.

The second dimension, Pascal code

quality, examined the correctness, efficiency,

and logical structure of the generated code. This

aspect of the evaluation focused on whether the

students’ generated programs adhered to

established standards of Pascal programming,

including proper use of syntax, efficient

implementation of algorithms, and the logical

flow of the code. In particular, the programs had

to correctly implement the numerical methods

associated with each computational task—

differentiation, integration, and root-finding.

Code that was logically sound and efficient was

highly valued, as it indicated a deeper

understanding of both the programming

language and the computational techniques

being employed.

The third dimension, output quality,

assessed the accuracy, completeness, and

reliability of the results produced by the

programs. This dimension was particularly

important, as the ultimate goal of writing the

Pascal code was to obtain correct and

meaningful outputs for each of the

https://doi.org/10.29303/jipp.v10i2.3633

Taufik & Syahrial (2025). Jurnal Ilmiah Profesi Pendidikan, 10 (2): 1907 – 1913

DOI: https://doi.org/10.29303/jipp.v10i2.3633

1909

computational tasks. The students’ programs

were evaluated based on the precision of their

numerical results, the consistency of their

outputs across various inputs, and their ability to

handle edge cases or special conditions. The

outputs were expected to be not only correct but

also reliable, ensuring that the program could

produce consistent results under different

computational scenarios. Screenshots of the

code and output were submitted by the students,

and these were carefully analyzed for both

accuracy and coherence, following the

procedures outlined by (Mills, K, et.al, 2024).

To evaluate the performance levels

systematically, a three-tier categorization system

was employed, drawing from the framework

proposed by Rodriguez and Martinez (2020).

This framework allowed for a clear distinction

between different levels of performance based

on the quality of the students' submissions. In

the low-quality category, students typically

generated ambiguous or poorly constructed

prompts, which led to incorrect or incomplete

code. These submissions often contained syntax

errors, faulty logic, or failed to compile,

resulting in invalid outputs or no output at all. In

some cases, the students were unable to address

basic computational tasks, highlighting gaps in

both their programming and problem-solving

skills. These submissions were classified as low-

quality because they failed to meet the basic

standards required for successful code

generation.

The moderate-quality category was

assigned to students who produced prompts that

were generally relevant but displayed minor

ambiguities or inefficiencies. While the prompts

were largely effective, they often lacked the

precision needed to generate optimal code. As a

result, the Pascal programs produced were

functional but suboptimal. These programs were

able to solve the computational tasks but

typically did so in a less efficient manner, and

the outputs, while mostly correct, occasionally

exhibited inconsistencies or inaccuracies. The

students in this category demonstrated a

reasonable understanding of the tasks and the

programming techniques but required further

refinement in their approach to both coding and

prompt generation.

In contrast, the high-quality category

represented students who demonstrated

exceptional proficiency in both prompt

generation and code development. Their

prompts were clear, concise, and well-

structured, guiding the AI to generate accurate

and efficient Pascal code. The programs

compiled successfully, adhered to Pascal

programming standards, and produced accurate

and comprehensive outputs. These students

exhibited a strong understanding of the

computational methods being applied and were

able to create programs that were not only

correct but also optimized. The outputs

generated were reliable, consistent across

various inputs, and demonstrated the programs'

ability to handle edge cases effectively. The

students in this category excelled in integrating

AI tools into their learning process, using the

technology to enhance their problem-solving

skills and achieve high-quality computational

results.

This structured classification framework

allowed for a comprehensive assessment of the

students' ability to effectively integrate AI tools

into the learning process for computational

physics. By categorizing the students'

performance into three distinct levels—low,

moderate, and high—this study provided a clear

understanding of how well students were able to

use AI-generated prompts to develop functional

and efficient programs. Furthermore, the

framework highlighted the varying degrees of

proficiency in coding and problem-solving

skills, offering valuable insights into the impact

of AI tools on learning outcomes in the context

of computational physics. The findings of this

study contribute to the growing body of

literature on AI-assisted learning in STEM

education and underscore the potential of AI to

enhance programming education.

FINDINGS AND DISCUSSION

The present section outlines the empirical

findings derived from an analysis of student

performance in computational physics tasks,

with a particular focus on prompts, program

development, and output quality. The data are

visualized through three primary figures: a

histogram, a box plot, and a correlation

heatmap. These visualizations serve to elucidate

patterns of distribution, central tendencies,

variability, and the degree of association among

the measured variables. Specifically, the

analysis aims to capture how students responded

to conceptual prompts, translated those prompts

into computational solutions, and subsequently

https://doi.org/10.29303/jipp.v10i2.3633

Taufik & Syahrial (2025). Jurnal Ilmiah Profesi Pendidikan, 10 (2): 1907 – 1913

DOI: https://doi.org/10.29303/jipp.v10i2.3633

1910

generated output with varying degrees of

accuracy and completeness. Such an integrated

examination provides meaningful insights into

the cognitive and procedural dimensions of

student engagement with differentiation,

integration, and root-finding tasks.

Figure 1. Distribution of Prompts, Programs, and

Outputs for Students

This histogram illustrates the distribution

of student performance across different

categories: prompts, programs, and outputs. For

each category, the histogram shows how

frequently each value occurs across all students.

The x-axis represents the values in each

category (ranging from 0 to 2), while the y-axis

represents the frequency of each value. Prompts:

The distribution of student responses to tasks

involving differentiation, integration, and root-

finding prompts. Programs: The distribution of

student performance for the programming tasks

related to differentiation, integration, and root-

finding. Outputs: The frequency distribution of

the output quality generated by the students for

the tasks.

Figure 2. Box Plot of Prompts, Programs, and

Outputs for Students

The box plot presents a visual summary

of the distribution of values for each category:

prompts, programs, and outputs for

differentiation, integration, and root-finding.

The box represents the interquartile range (IQR),

where the middle 50% of values lie. The line

within the box shows the median value,

indicating the central tendency of the data. The

whiskers extend from the box to the minimum

and maximum values within 1.5 times the IQR.

Outliers are shown as individual points outside

the whiskers. This box plot helps to identify the

spread and skewness of the data, highlighting

any outliers, especially in task performance.

Figure 3. Correlation Heatmap of Prompts,

Programs, and Outputs

The correlation heatmap shows the

strength of relationships between the different

categories of prompts, programs, and outputs.

The color gradient indicates the level of

correlation, with darker shades representing

stronger positive correlations and lighter shades

representing weaker or no correlation. Positive

correlations: For instance, if the correlation

value is high between 'Program - Differentiation'

and 'Output - Differentiation,' it suggests that

students who performed well on the

differentiation programming task also tended to

produce higher-quality outputs for the same

task. Negative correlations: If there is a low or

negative correlation between 'Prompt -

Integration' and 'Output - Integration,' it could

indicate that performing well in the integration

prompt does not always correlate with high-

quality output. This heatmap provides valuable

insights into how well students' responses and

performance on the prompts relate to their

program-solving and output generation abilities.

Discussion

The results of this study demonstrate that

AI-assisted prompt generation has a notably

positive influence on students' ability to generate

accurate Pascal code. Throughout the tasks,

students were tasked with using AI tools to

develop code that could solve computational

physics problems involving numerical

https://doi.org/10.29303/jipp.v10i2.3633

Taufik & Syahrial (2025). Jurnal Ilmiah Profesi Pendidikan, 10 (2): 1907 – 1913

DOI: https://doi.org/10.29303/jipp.v10i2.3633

1911

differentiation, integration, and root-finding.

Regardless of the varying levels of proficiency,

all students successfully completed the tasks,

highlighting the capability of AI tools to assist

students in overcoming the initial challenges of

programming. This positive outcome suggests

that AI can serve as a valuable resource in

helping students bridge gaps in their coding

abilities, allowing them to produce functional

code even with minimal prior experience in

certain areas.

The performance distribution among

students revealed some interesting patterns. A

majority of the students (70%) performed at a

moderate level across all three evaluation

criteria: prompt generation, Pascal code quality,

and output quality. This indicates that while

most students were able to successfully leverage

AI-generated prompts to produce functional

code, they did so with varying degrees of

efficiency. These students often produced

programs that worked, but they were not

optimized, and their outputs, while correct,

occasionally exhibited inconsistencies or minor

errors. These findings suggest that while AI

tools are effective in assisting students, a solid

understanding of the computational principles

behind the tasks is crucial for optimizing the use

of these tools. This aligns with the work of Harp

and Smith (2021), who emphasized the

importance of students’ deeper knowledge of

computational methods to fully benefit from AI

assistance.

Interestingly, 10% of the students

achieved high-quality results, excelling in all

three criteria. These students demonstrated a

more sophisticated understanding of the task

requirements and were able to apply their

knowledge effectively in fine-tuning the AI-

generated code. Their ability to produce high-

quality outputs suggests that AI tools, when

used correctly, can significantly enhance

students' problem-solving capabilities. These

students were not only able to generate

functional code but also optimized their

programs to be more efficient and accurate.

They demonstrated a strong command over both

the computational methods being applied and

the nuances of programming. This group of

students showcased the potential of AI tools to

support higher-order thinking in programming

education, where students can go beyond basic

code generation to actively refine and improve

the output produced by AI.

On the other hand, 20% of the students

produced lower-quality outputs. These students

faced significant challenges in utilizing AI-

generated prompts effectively. Often, they

struggled with debugging and optimizing the

code produced by the AI, which led to syntax

errors, inefficient logic, or outputs that were

inconsistent with the expected results. This

difficulty highlights a critical limitation of

current AI tools: while they are proficient at

generating basic code, they are not yet capable

of fully replacing the human oversight necessary

for debugging, optimization, and ensuring that

the code aligns with the intended computational

goals. The students who struggled with these

tasks were unable to make the necessary

adjustments to the AI-generated code to meet

the computational requirements, pointing to the

need for deeper computational understanding

and more hands-on experience in programming.

The challenges faced by students in the

lower-quality category suggest that while AI can

be an effective aid in code generation, it cannot

fully substitute for the nuanced decision-making

and problem-solving skills that are essential for

high-level programming tasks. This aligns with

current literature that discusses the

complementary role of AI tools in education.

For instance, while AI can assist with the

technical aspects of coding, it is the students’

ability to understand the underlying principles

and to engage in critical thinking that ultimately

determines the quality of their output. As AI

continues to evolve, future iterations of these

tools may become more adept at assisting with

debugging and optimizing code, reducing the

burden on students and enabling them to focus

on higher-level problem-solving.

CONCLUSION

This study provides important insights

into the potential of AI-assisted code generation

in enhancing students’ programming

proficiency, particularly in the domain of

computational physics. By leveraging AI tools,

students were able to generate Pascal code that

solved complex computational tasks, such as

numerical differentiation, integration, and root-

finding. While the AI tools effectively supported

students in overcoming the initial technical

challenges of coding, the quality of the final

outputs varied widely across the cohort. Some

students produced high-quality, optimized code,

https://doi.org/10.29303/jipp.v10i2.3633

Taufik & Syahrial (2025). Jurnal Ilmiah Profesi Pendidikan, 10 (2): 1907 – 1913

DOI: https://doi.org/10.29303/jipp.v10i2.3633

1912

while others struggled with errors or

inconsistencies in their outputs. This variation

underscores the importance of students’

foundational understanding of the underlying

computational principles, which ultimately

influenced the quality of their engagement with

AI-generated code.

The study’s findings reveal that AI tools,

while immensely helpful in automating certain

aspects of the coding process, cannot fully

replace the need for active student engagement.

Students who achieved high-quality results

demonstrated a deeper understanding of the

computational tasks and were able to critically

engage with the AI-generated code to optimize it

further. These students did not simply rely on

the AI tool but were able to fine-tune the output,

ensuring that the code was both efficient and

accurate. In contrast, those who struggled to

produce high-quality results faced challenges in

debugging and optimizing the AI-generated

code. This is a key limitation of current AI tools:

while they can assist with generating

syntactically correct code, they are not yet able

to fully replicate the cognitive and problem-

solving processes that human students apply

when troubleshooting and refining their work.

These observations align with prior research,

such as that by Baker and Siemens (2014), who

argue that while AI tools can significantly

enhance learning by providing personalized

support and automating cognitive tasks, they

cannot replace the critical thinking and active

engagement that are fundamental to the learning

process. In the context of programming

education, AI tools serve as valuable assistants,

but students must actively engage with the code,

assess its functionality, and apply their

understanding of computational methods to

refine and optimize the results. This interaction

between AI and human oversight is essential for

ensuring that students not only produce

functional code but also develop a deeper

understanding of the computational concepts at

play.

The study also emphasizes that AI tools

should be viewed as a complement to, rather

than a substitute for, traditional learning

approaches. While AI can automate some

aspects of the coding process, the real

educational value arises when students are

encouraged to engage critically with the content

that these tools generate. The active involvement

of students in refining AI-generated code and

ensuring its accuracy and efficiency fosters the

development of problem-solving skills, which

are essential for mastery in programming. In

conclusion, this study highlights the

effectiveness of AI-assisted code generation in

supporting students’ learning in computational

physics, while also underscoring the need for

students to maintain a strong foundational

understanding of computational principles.

Although AI tools can significantly aid in

generating correct code, the quality of the final

outputs depends largely on students’ ability to

critically evaluate and optimize the AI-generated

content. As AI tools evolve, they will likely

become better equipped to assist with debugging

and optimization, further enhancing their value

in educational contexts. However, it is crucial

that AI is integrated in a way that encourages

active engagement from students, ensuring they

not only rely on the tools but also develop a

deeper, more nuanced understanding of the

subject matter.

ACKNOWLEDGMENT

The author wishes to express profound

gratitude to the Physics Education Study

Program, Department of Mathematics

Education, and the Department of Natural

Sciences Education, Faculty of Teacher Training

and Education (PMIPA FKIP), University of

Mataram, for the invaluable opportunity to

contribute to the academic community through

the delivery of the Computational Physics

course. Sincere appreciation is also extended to

the highly motivated sixth-semester students of

the Physics Education Program, whose active

engagement and intellectual curiosity

significantly enriched the learning environment

and pedagogical experience.

REFERENCES

Alanazi, M., Soh, B., Samra, H., & Li, A.

(2025). The influence of artificial

intelligence tools on learning outcomes in

computer programming: A systematic

review and meta-analysis. Computers,

14(5), 185.

https://doi.org/10.3390/computers140501

85

Bond, M., Khosravi, H., De Laat, M., Bergdahl,

N., Negrea, V., Oxley, E., Pham, P., &

Chong, S. W. (2024). A meta systematic

https://doi.org/10.29303/jipp.v10i2.3633

Taufik & Syahrial (2025). Jurnal Ilmiah Profesi Pendidikan, 10 (2): 1907 – 1913

DOI: https://doi.org/10.29303/jipp.v10i2.3633

1913

review of artificial intelligence in higher

education: A call for increased ethics,

collaboration, and rigour. International

Journal of Educational Technology in

Higher Education, 21(4), 1-16.

https://doi.org/10.1186/s41239-023-

00436-z

Chen, L., Chen, P., & Lin, Z. (2020). Artificial

intelligence in education: A review. IEEE

Access, 8, 75264–75278.

https://doi.org/10.1109/ACCESS.2020.29

88235

Liu, Y., Zhong, Z., & Li, X. (2020). AI-based

learning systems: Advancing educational

outcomes through machine learning.

Computers & Education, 157, 103944.

https://doi.org/10.1016/j.compedu.2020.1

03944

Luckin, R., Holmes, W., Griffiths, M., &

Forcier, L. B. (2016). Intelligence

unleashed: An argument for AI in

education. Pearson.

https://doi.org/10.1007/s11423-016-9446-

0

Mills, K. A., Cope, J., Scholes, L., & Rowe, L.

(2024). Coding and Computational

Thinking Across the Curriculum: A

Review of Educational Outcomes.

Review of Educational Research, 95(3),

581-618.

https://doi.org/10.3102/003465432412413

27 (Original work published 2025)

Moroianu, N., Iacob, S.-E., & Constantin, A.

(2023). Artificial intelligence in

education: A systematic review. In

Proceedings of the 6th International

Conference on Economics and Social

Sciences (pp. 906–921). Bucharest

University of Economic Studies.

https://doi.org/10.2478/9788367405546-

084

Popenici, S. A. D., & Kerr, S. (2017). Exploring

the impact of artificial intelligence on

teaching and learning in higher education.

Research and Practice in Technology

Enhanced Learning, 12(1), 1-13.

https://doi.org/10.1186/s41039-017-0041-

4

Topping, K. J., Douglas, W., Robertson, D., &

Ferguson, N. (2021). The effectiveness of

online and blended learning from schools:

A systematic review. University of

Dundee.

https://discovery.dundee.ac.uk/files/56755

917/SYSTEMATIC_REVIEW.pdf

Yilmaz, R. M., & Sari, E. (2019). A review of

artificial intelligence applications in

education: Methods and strategies.

Journal of Educational Technology

Systems, 47(3), 368-389.

https://doi.org/10.1177/004723951987290

7

Zhu, M., & Zhang, K. (2025). Artificial

intelligence for computer science

education in higher education: A

systematic review of empirical research

published in 2003–2023. Technology,

Knowledge and Learning.

https://doi.org/10.1007/s10758-025-

09859-1

https://doi.org/10.29303/jipp.v10i2.3633

